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xii

This is a textbook on the operating principles of semiconductor devices. 
It is appropriate for undergraduate (junior or senior) or beginning gradu-
ate students in electrical engineering, as well as students of computer 

engineering, physics, and materials science. It is also useful as a reference for 
practicing engineers and scientists who are involved with modern semiconductor 
devices.

Prerequisites are courses in chemistry and physics and in basic electric 
 circuits, which are normally taken in the freshman and sophomore years.

The text is appropriate for a two- or three-semester course on semiconductor 
devices. However, it can be used for a one-semester course by eliminating some 
of the more advanced material and assigning some of the sections as read-only. 
The authors have attempted to organize the material so that some of the detail 
derivation sections can be skipped without affecting the comprehension of other 
sections.

This book is divided into five parts:

 1. Materials 
 2. Diodes
 3. Field-effect transistors
 4. Bipolar transistors
 5. Optoelectronic and power semiconductor devices

The first four parts are followed by “Supplements” that, while not required 
for an understanding of the basic principle of device operation, contain related 
material that may be assigned at the discretion of the instructor.

Part 1, “Materials,” contains four chapters and a Supplement. The first two 
chapters contain considerable review material from the prerequisite courses. 
This material is included because it is used extensively in later chapters to 
explain the principles of device operation. Depending on the detailed content on 
the prerequisite courses, much of the material in these chapters can be relegated 
to reading assignments.

The level of quantum mechanics to be covered in a course like this varies 
widely. In this book some basic concepts are included in the main chapters of 
Part 1. Those wishing to cover quantum mechanics in more detail will find more 
extensive material in the Supplement to Part 1.

The basic operating principles of large and small devices of a particu-
lar type (e.g., diodes, field-effect transistors, bipolar junction transistors, and 

PREFACE
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 Preface xiii

photodetectors) are the same. However the relative importance of many of the 
parameters involved in device operation depends on the device dimensions. In 
this book the general behavior of devices of large dimensions is treated first. In 
each case, we treat “prototype” devices (such as step junctions and long channel 
field-effect transistors) from which the fundamental physics can be learned, and 
then we develop more realistic models considering second-order effects. These 
second-order effects can have significant influence on the electrical characteris-
tics of modern small-geometry devices. The instructor can go into as much depth 
as desired or as time permits.

Topics treated that are typically omitted in undergraduate texts are:

 ◼ The differences between the electron and hole effective masses as used in 
density-of-states calculations and conductivity calculations.

 ◼ The differences in electron and hole mobilities (and thus diffusion 
 coefficients) depending on whether they are majority carriers or minority 
carriers.

 ◼ The effects of doping gradients in the base of bipolar junction transistors 
(and/or the composition and heterojunction BJTs) on the current gain in 
switching speed.

 ◼ Band gap reduction in degenerate semiconductors. While this has little 
effect on the electrical characteristics of diodes or field-effect transistors, 
its effect in the emitter of bipolar junction transistors can reduce the current 
gain by orders of magnitude.

 ◼ The use of wide band-gap semiconductors (e.g., GaN and 4H-SiC) for use 
in high-power semiconductor devices.

While the major emphasis is on silicon and silicon-based devices, the opera-
tion of compound semiconductor devices, alloy devices (e.g., Si:Ge, AlGaAs) 
and heterojunction devices (junctions between semiconductors of different com-
position) are also considered because of the increased performance that is pos-
sible with band-gap engineering.

Fabrication, while an important part of semiconductor engineering, is often 
skipped in the interest of time. This material is introduced in Appendix C and can 
be assigned as read-only material if desired.

Supplemental topics are presented in a series of Online Modules. These 
modules, whose content is beyond that normally taught in a first course on semi-
conductor devices, contain material which supplements that of the book proper. 
For example, Online Module 7 describes some basic representative circuits 
utilizing CMOS devices. These Online Modules are available on the web for 
downloading.
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1

1P A R T 

Materials

INTRODUCTION

Semiconductors form the basis of most modern electronic systems (e.g., 
computers, communication networks, control systems). While there are 
applications for other materials in electronics (e.g., magnetic materials 

in hard drives), this book concentrates on electronic devices that are based on 
semiconductors.

Understanding the operation and design of semiconductor devices begins 
with an understanding of the materials involved. In Part 1 of this book, we inves-
tigate the behavior of electrons in materials, starting with the atoms themselves. 
Then we progress to electrons in crystalline semiconductors.

We will see that classical mechanics does not provide a complete picture of 
electron activity in solids. In principle, one should instead use quantum mechan-
ics to predict the electrons’ behavior, but the application of quantum mechanics 
is not as simple as the more familiar classical or Newtonian mechanics. We will 
therefore introduce pseudo-classical mechanics, which modifies familiar classi-
cal equations to account for some quantum mechanical effects.

Some basic quantum mechanical concepts important for the understanding 
of device operation are covered in Chapter 1. (A more detailed discussion is 
contained in Supplement to Part 1, found after Chapter 4.) In Chapter 2, we 
cover pseudo-classical mechanics, which allows us to predict the reaction of 
electrons to complicated fields, while using simple and intuitive pseudo-classical 
equations.

The use of pseudo-classical mechanics will also allow us to draw and use 
energy band diagrams. These diagrams are indispensable for understanding 
and predicting the motion of the electrons and holes, and thus the current in 
semiconductors.

In Chapter 3, we will see that conductivity of semiconductors is controlled 
by the number of charge carriers available to carry current. The charge carriers 
in semiconductors are electrons and holes. Their numbers are controlled by the 
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concentrations of impurity elements that are intentionally added to the material. 
The carrier concentrations also depend on temperature and on whether light is 
shining on the sample.

It will emerge that there are two major forms of current in semiconductors, 
drift current and diffusion current. Drift current is caused by the presence of an 
electric field, whereas diffusion current arises when the carrier concentrations 
vary with position.

Chapter 4 covers nonhomogeneous semiconductor materials, in which the 
doping or the material composition itself may vary with position. These varia-
tions can lead to internal electric fields that can enhance device performance. 
Most modern semiconductor devices have regions of such nonhomogeneous 
materials.

The Supplement to Part 1 contains additional topics relevant to semiconduc-
tor materials, including a more detailed discussion of quantum mechanics and 
phonons.

We will start with electrons in atoms. ◼
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 C H A P T E R  1
Electron Energy and  
States in Semiconductors

1.1 INTRODUCTION AND PREVIEW
We begin our study of semiconductors with some fundamental physics of how 
electrons behave in matter. The ability to control the movement of electrons 
in solids is the basis of semiconductor device engineering. To understand the 
electronic properties of these devices, it is necessary to understand the electronic 
properties of the materials from which they are made and how those properties 
are affected by impurities (intentional and unintentional), temperature, applied 
voltages, device structures, and optical radiation.

Since solids are composed of atoms, we start by examining the electronic 
properties of atoms, and then extending those results to simple molecules and 
solids. In particular, the results for silicon (Si) and gallium arsenide (GaAs) 
are emphasized, two commonly used semiconductors in integrated circuits and 
semiconductor devices. Several other semiconductors and semiconductor alloys 
important in modern devices are also discussed.

As we investigate the atom, we’ll be using quantum mechanics, a branch of 
science that is needed to accurately describe the behavior of very small objects 
such as atoms and electrons. We will see as we go along that quantum mechanics 
is based on the idea that energy can exist only in discrete packets, or quanta. The 
size of a quantum is so small that it doesn’t affect one’s results when one is com-
puting the momentum or velocity of large objects such as automobiles or dust par-
ticles, but the quantum description is extremely important for electrons and atoms.

An understanding of quantum mechanics is not simple to obtain, and its use 
to calculate properties of more than a few systems in closed form is difficult. For-
tunately, however, in semiconductors the behavior of electrons of interest can be 
determined by pseudo-classical mechanics, in which classical formulas such as 
Newton’s laws and the Lorentz equation can be used, with the true electron mass 
replaced by an effective mass. As a result, in this section, a minimal discussion 
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of quantum mechanics is presented. A somewhat greater discussion of quan-
tum mechanics appropriate to some of the electronic processes in semiconductor 
devices is presented in the Supplement to Part 1, after Chapter 4.

The key to understanding semiconductors is to appreciate the physical inter-
pretation of the mathematical results. Physical understanding is emphasized in 
this book.

1.2 A BRIEF HISTORY
In the early twentieth century, scientists were trying to develop models that 
would explain the results observed from such experiments as the scattering 
of X-rays, the photoelectric effect, and the emission and absorption spectra of 
atoms. In 1910, J. J. Thomson proposed a model of the atom in which a sphere of 
continuous positive charge is embedded with electrons, as shown in Figure 1.1a. 
Ernest Rutherford, in 1911, offered an improvement to the Thomson model: In 
the Rutherford model of the atomic structure, all of the positive charge and virtu-
ally all of the atom’s mass were assumed to be concentrated in a small region 
in the center of the atom. This nucleus is often treated as a sphere with a radius 
on the order of 10−14 meters. The negatively charged electrons were assumed to 
orbit about the positively charged nucleus, much as planets orbit the sun or satel-
lites orbit the earth.

In 1913, Neils Bohr assumed that the electrons in the Rutherford model 
of the atom orbited the nucleus in circles, as shown in Figure 1.1b. From this, 
he predicted that for the atom to be stable, the electrons could have only cer-
tain energies, or that the energies would be quantized. Energy and many other 
observables (properties that can be directly measured) are expressed in terms of 
Planck’s constant. Planck’s constant, h, has the value 6.63 × 10−34 joule– seconds. 

Figure 1.1 (a) The Thomson model of an atom, in which the positive charge is  uniformly 
distributed in a sphere and the electrons are considered to be negative point charges 
embedded in it; (b) the Bohr model, in which the positive charge is  concentrated in a 
small nucleus and the electrons orbit in circles; (c) the Wilson- Sommerfeld model, which 
is similar to the Bohr model except that it allows for  elliptical orbits.
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The energies Bohr predicted for electrons in atoms were in excellent agreement 
with the experimental results obtained from spectroscopic data.

In 1916, Wilson and Sommerfeld generalized the Bohr model to apply it to 
any physical system in which a particle’s motion is periodic with time. This mod-
ification allows for the possibility of elliptical orbits, as shown in Figure 1.1c.

1.3 APPLICATION TO THE HYDROGEN ATOM
In this section, we briefly review the Bohr model of the hydrogen atom. The 
hydrogen atom is emphasized because hydrogen-like impurities are impor-
tant in semiconductor devices, and these impurities can be treated in a manner 
analogous to the Bohr model. In the  Supplement to Part 1, we will compare 
these results  to those obtained using quantum mechanics as represented by 
 Schrödinger’s equation.

1.3.1 THE BOHR MODEL FOR THE HYDROGEN ATOM

We start with the Bohr model, in which the electrons revolve around the nucleus 
in circular paths. Because the mass of the nucleus is 1.67 × 10−27 kg, 1830 times 
that of the electron, the nucleus is considered to be fixed in space.

We consider as an example the neutral hydrogen atom, which has one orbit-
ing electron, and we treat the electron and nucleus both as point charges. The 
coulomb force between two particles with charges Q1 and Q2 is

  F =   
 Q  1    Q  2   ______ 
4π  ε  0    r  2 

   =   
−  q  2 

 ______ 
4π  ε  0    r  2 

    (1.1)

where r is the distance between the two charges and ε0 = 8.85 × 10−12 farads/
meter is the permittivity of free space (because there is only free space between 
the nucleus and the electron). The expression at the far right-hand side of 
 Equation (1.1) is obtained by recognizing that the hydrogen nucleus has only one 
proton, so Q1 is equal to + q = 1.602 × 10−19 Coulombs, the elemental charge, 
and the charge of the electron Q2 is equal to −q. The resulting negative sign in 
Equation (1.1) indicates that the force is attractive.

We now have an expression for the attractive (centripetal) force between 
the two particles, and we recall from classical mechanics that the force F on a 
particle is equal to minus the gradient of the potential energy, or

  F = − ∇ E  p   = −   
d E  P  

 ____ 
dr

    (1.2)

In the last expression, the gradient is taken in the r direction, and EP is the poten-
tial energy of the electron at position r. Equation (1.2) with the aid of (1.1) can 
be rewritten as

  d E  P   = d E  P  (r) = − Fdr =   
 q  2  dr

 ______ 
4π  ε  0    r  2 

    (1.3)
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One can integrate both sides to obtain EP, but there will be a constant of 
integration. The actual value of the potential energy is arbitrary (as is the choice 
of the constant), since the value of the potential energy depends entirely on one’s 
choice of reference. We can choose a convenient reference by noting that the 
coulomb force at infinite distance is zero. It makes sense for this case, then, to 
choose r = ∞ as a reference point, so we define the potential energy at r = ∞ as 
the vacuum level, Evac:

   E  P  (r = ∞) =  E  vac    (1.4)

This is the energy required to free the electron from the influence of the nucleus, 
essentially by moving the electron infinitely far away from it. If the electron is 
infinitely far from the nucleus, it cannot really be considered part of the atom—it 
is now a free electron in vacuum.

Now we can solve Equation (1.3) for a given value of r:

    ∫ 
 E  P  

  
 E  vac  

   d E  P   =  ∫ 
r
  
∞

     
 q  2  dr

 ______ 
4π  ε  0    r  2 

    (1.5)

where EP is the electron potential energy at some distance r from the nucleus. 
Integrating both sides and rearranging, we obtain

   E  P   =  E  vac   −   
 q  2 
 ______ 

4π  ε  0   r
    (1.6)

Figure 1.2 shows a plot of the r dependence of EP. From Equation (1.1), 
and since the force is equal to minus the gradient (slope) of the potential energy, 
we see that the force on the electron is directed toward the nucleus, or the 
 coulomb force is centripetal. Since the nucleus is considered to be a point 
charge, EP approaches negative infinity as r approaches zero. Since the radius 
of the nucleus is on the order of 10−14 m, however, and the radius of the small-
est  electron orbit is on the order of 10−10 m, the potential energy reaches a 
 minimum near r = 0.

Figure 1.2 Potential energy diagram for 
an electron in the vicinity of a single posi-
tive point charge. The electron is consid-
ered to be a point charge.
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Since the electron is revolving in a circle of radius r around the nucleus, we 
know from Newtonian mechanics that its centrifugal force is equal to

  F =   
m  υ  2 

 ____ 
r
    (1.7)

For the atom to be stable, the net force on the electron must be zero.  Equating 
our previous expression for the centripetal force due to the coulomb attraction 
[Equation (1.1)] to the centrifugal force [Equation (1.7)], we can write

    
m  υ  2 

 ____ 
r
   −   

 q  2 
 ______ 

4π  ε  0    r  2 
   = 0  (1.8)

Bohr also postulated that the integral of the angular momentum around one 
complete orbit is an integer multiple of Planck’s constant h:

  ∮  P  θ   dθ =   ∫ 
0
  
2π

   mυrdθ = nh  (1.9)

where n is an integer. Since the orbit is assumed circular in the Bohr model, r 
is a constant, and so are the potential energy EP and the speed υ. Therefore, the 
integral becomes
  2πmrυ = nh  (1.10)
There is a solution for each integer value of n, so we write

  m  υ  n    r  n   = n   
h
 ___ 

2π
   = nħ  (1.11)

Here we have introduced a new symbol; it turns out that engineers and physi-
cists (and now you) use the quantity h/2π so much that there is a special 
 character  for it, ħ, pronounced “h-bar.” The subscripts n in Equation (1.11) 
indicate the  particular orbital radius or speed associated with a specific quan-
tum number n.

If we simultaneously solve Equations (1.8) and (1.11), we can derive an 
expression for the Bohr radius of the nth state, where by “state” we mean the 
properties associated with a particular value of n:

   r  n   =   
4π  ε  0    n  2   ħ  2 

 _________ 
m  q  2 

    (1.12)

and the speed of the electron in that particular state is

   υ  n   =   
 q  2 
 _______ 

4π  ε  0   nħ
    (1.13)

Our primary goal, however, is to find the energies associated with these 
states. We know that the total energy of a system is equal to the kinetic energy 
plus the potential energy. The kinetic energy of the nth energy level is

   E   K  n     =   
1
 __ 

2
   m  υ  n  2  =   

m  q  4 
 ____________  

2 (4π  ε  0  )  2   n  2   ħ  2 
    (1.14)
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For the nth energy level, we can find rn from Equation (1.12) and use that in 
Equation (1.6) to write for the potential energy

   E  Pn   =  E  vac   −   
m  q  4 
 ___________ 

 (4π  ε  0  )  2   n  2   ħ  2 
    (1.15)

Thus, the total energy En is

   E  n   =  E  Kn   +  E  Pn   =  E  vac   −   
m  q  4 
 ____________  

2 (4π  ε  0  )  2   n  2   ħ  2 
    (1.16)

We say that the energy is quantized. It can have only discrete values associated 
with the quantum number n. We note that n = 1 refers to the smallest radius and 
energy of the electron in the Bohr model, n = 2, the next larger values, etc.

Find the energies and radii for the first four orbits in the hydrogen atom.

◾ Solution

  

 E  n  

  

=

  

 E  vac   −   
m  q  4 
 ____________  

2 (4π  ε  0  )  2   n  2   ħ  2 
  

    
 
  

=
  
 E  vac   −   

(9.11 ×  10  −31  kg)(1.60 ×  10  −19   C)  4 
    _______________________________________________     

(2)  (4)  2   (3.1416)  2   (8.85 ×  10  −12  F / m)  2   (1.05 ×  10  −34  J ⋅ s)  2 
     (    

1
 __ 

n
   )     

2
 
       

 E  n  
  
=

  
 E  vac   −   (    

1
 __ 

n
   )     

2
 (2.18 ×  10  −18  J)

    

 

  

=

  

 E  vac   −   (    
1
 __ 

n
   )     

2
 (13.6 eV)

    (1.17)

Here a new unit of energy is introduced, the electron volt (eV). The electron 
volt is defined as the amount of energy acquired by an electron when it is accelerated 
through 1 volt of electric potential. To convert between SI (International System) units 
(joules) and electron volts, use

 1 eV = 1.60 ×  10  −19  joules 

Electron volts are not SI units, and therefore they must be used with care in 
calculations.

The Bohr radii can be calculated from Equation (1.12):

  
 r  n    

=
  
  
4π  ε  0    n  2   ħ  2 

 _________ 
m  q  2 

   =   
(4)(3.1416)(8.85 ×  10  −12  F / m)(1.05 ×  10  −34  J ⋅  s)  2 

    ________________________________________    
(9.11 ×  10  −31  kg)(1.60 ×  10  −19   C)  2 

   ×  n  2 
       

 r  n  
  
=

  
0.0526  n  2  nm

    (1.18)

The energies and Bohr radii of the first four energy levels are given in Table 1.1. 
These energies and radii are plotted in Figures 1.3 and 1.4, respectively.

EXAMPLE 1.1
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Figure 1.3 Allowed energies in the hydrogen 
atom. Higher energies occur increasingly close to 
each other, approaching the vacuum level.
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E∞ = Evac
E4 = Evac - 0.850 eV
E3 = Evac - 1.51 eV

E2 = Evac - 3.40 eV

E1 = Evac - 13.6 eV
Ground state

Figure 1.4 Radii of the first four electronic orbits of the hydrogen atom, 
according to the Bohr model.

r1 = 0.053
r2 = 0.212 r3 = 0.477 r4 = 0.848 nm

Radius

En rn

E1 = Evac − 13.6 eV r1 = 0.0526 nm
E2 = Evac − 3.40 eV r2 = 0.212 nm
E3 = Evac − 1.51 eV r3 = 0.477 nm
E4 = Evac − 0.850 eV r4 = 0.848 nm

Table 1.1  The first four Bohr energies and orbital 
radii for the hydrogen atom
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